Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sarah A. Barnett, Alexander J. Blake,* Neil R. Champness and Claire Wilson

School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England

Correspondence e-mail:
a.j.blake@nottingham.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.034$
$w R$ factor $=0.082$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-Bis(acetonitrile)tetraaquacobalt(II) dinitrate at 150 K

In the title compound, $\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{NO}_{3}\right)_{2}$, the $\mathrm{Co}^{\text {II }}$ cations occupy crystallographic inversion centres and adopt a distorted octahedral coordination geometry, with transdisposed acetonitrile ligands. Extensive hydrogen-bonding interactions between the coordinated water ligands and the nitrate counter-anions lead to the formation of a threedimensional framework. There are substantial differences between the structure of the title compound at 150 K and the previously reported structure at 293 K .

Comment

The title compound, (I), isolated during our studies of hydrogen-bonded frameworks formed by simple aqua-metal complexes (Blake et al., 2001), exists as an air-stable orange solid. An X-ray study confirmed the stoichiometry of the compound (Fig. 1). The $\mathrm{Co}^{\text {II }}$ centre occupies an octahedral environment with the MeCN ligands adopting a trans arrangement. Extensive hydrogen-bonding interactions are observed between the water molecules and the nitrate anions (Fig. 2), leading to the formation of a three-dimensional hydrogen-bonded array. Thus, each nitrate anion is hydrogen bonded to four symmetry-equivalent $\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ cations, with each nitrate O atom participating in hydrogen bonding. Two of the O atoms accept single hydrogen bonds from two different water-molecule donors, but the other adopts hydrogen bonds from two water molecules which are coordinated to two distinct $\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ cations. Each cation forms hydrogen bonds with eight different nitrate anions.

(I)

The structure of (I) has been reported previously but was determined at 293 K (Kopylovich et al., 2001), as opposed to 150 K in this study. Comparison of the unit-cell dimensions of the previous and current reports reveals a significant and unexpected lengthening of the unit-cell b axis from 12.7715 (8) to 13.029 (3) \AA and an increase in the value of the β angle from 117.723 (9) to 119.744 (3) ${ }^{\circ}$. The two structures also differ in the degree of observed disorder. Thus, in the previously

Received 15 July 2002 Accepted 16 July 2002 Online 25 July 2002

Figure 1
View of the $\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ cation. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (iv) $2-x,-y$, $2-z$.
reported structure, one of the aqua ligands is disordered over two sites, resulting in $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ angles of 83.5 (4) and $98.7(6)^{\circ}$. In the current report, no disorder is observed and an $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ angle of $89.00(8)^{\circ}$ is found. Subtle differences in the hydrogen-bonding arrangement are also observed. Most noticeably, at 293 K , only two of the nitrate O atoms act as hydrogen-bond acceptors, in contrast to the current study where all three O atoms accept hydrogen bonds from water molecules coordinated to cobalt centres.

Experimental

Orange block-shaped crystals of the title compound were grown by cooling a heated solution of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in MeCN/toluene.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{NO}_{3}\right)_{2}$
$M_{r}=337.12$
Monoclinic, $P 2_{1} / c$
$a=7.7375$ (15) A
$b=13.029$ (3) \AA
$c=7.7605(15) \AA$
$\beta=119.744$ (3) ${ }^{\circ}$
$V=679.3(2) \AA^{3}$
$Z=2$

Figure 2
View of the hydrogen-bonding arrangement around the nitrate anion. MeCN molecules have been removed for clarity and hydrogen-bonding interactions are represented by dashed lines. Key: Co cross-hatch, N dotted and O left-hatch. [Symmetry codes: (i) $1-x,-y, 2-z$; (v) $x-1$, $\frac{1}{2}-y,-\frac{1}{2}+z$; (vi) $x-1, y, z-1$.]

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.712, T_{\text {max }}=0.877$
5625 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.082$
$S=1.07$
1552 reflections
105 parameters
H atoms treated by a mixture of independent and constrained refinement

1552 independent reflections
1345 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-9 \rightarrow 10$
$k=-17 \rightarrow 16$
$l=-10 \rightarrow 10$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.041 P)^{2} \\
&+0.255 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.42 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \text { e } \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left({ }^{(},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{O} 1 W$	$2.0780(18)$	$\mathrm{Co} 1-\mathrm{N} 1 S$	$2.1182(15)$
$\mathrm{Co} 1-\mathrm{O} 2 W$	$2.0423(16)$		
$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{O} 2 W$	$89.00(8)$	$\mathrm{O} 2 W-\mathrm{Co} 1-\mathrm{N} 1 S$	$89.05(6)$
$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{N} 1 S$	$91.09(8)$		

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.826 (10)	1.953 (10)	2.769 (2)	169 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O} 3$	0.835 (10)	1.932 (10)	2.765 (2)	176 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{iij}}$	0.834 (10)	1.917 (10)	2.751 (2)	178 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 B \cdots \mathrm{O} 1^{\text {iii }}$	0.834 (10)	1.898 (11)	2.724 (2)	171 (3)

Symmetry codes: (i) $1-x,-y, 2-z$; (ii) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $1+x, y, 1+z$.
All H atoms were located from a ΔF synthesis; these were then refined either as a rigid $\mathrm{H}_{2} \mathrm{O}$ group $[\mathrm{O}-\mathrm{H} 0.85(1) \AA$ and $\mathrm{H} \cdots \mathrm{H}$
1.34 (2) \AA] or using a rigid-rotor model in the case of the MeCN H atoms. Displacement parameters for the MeCN H atoms were constrained such that $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, while those of the water H atoms were refined freely.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2002).

The authors thank the EPSRC (UK) for funding.

References

Blake, A. J., Brett, M. T., Champness, N. R., Khlobystov, A. N., Long, D.-L., Schröder, M. \& Wilson, C. (2001). Chem. Commun. pp. 2258-2259.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Kopylovich, M. N., Kukushkin, V. Y., Guedes da Silva, M. F. C., Haukka, M., Frausto da Silva, J. J. R. \& Pombeiro, A. J. L. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1569-1573.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2002). PLATON. University of Utrecht, The Netherlands.

